Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(1): 291-302, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38118403

RESUMO

We present concentration-dependent dynamics of highly concentrated LiBr solutions and LiCl temperature-dependent dynamics for two high concentrations and compare the results to those of prior LiCl concentration-dependent data. The dynamical data are obtained using ultrafast optical heterodyne-detected optical Kerr effect (OHD-OKE). The OHD-OKE decays are composed of two pairs of biexponentials, i.e., tetra-exponentials. The fastest decay (t1) is the same as pure water's at all concentrations within error, while the second component (t2) slows slightly with concentration. The slower components (t3 and t4), not present in pure water, slow substantially, and their contributions to the decays increase significantly with increasing concentration, similar to LiCl solutions. Simulations of LiCl solutions from the literature show that the slow components arise from large ion/water clusters, while the fast components are from ion/water structures that are not part of large clusters. Temperature-dependent studies (15-95 °C) of two high LiCl concentrations show that decreasing the temperature is equivalent to increasing the room temperature concentration. The LiBr and LiCl concentration dependences and the two LiCl concentrations' temperature dependences all have bulk viscosities that are linearly dependent on τcslow, the correlation time of the slow dynamics (weighted averages of t3 and t4). Remarkably, all four viscosity vs 1/τCslow plots fall on the same line. Application of transition state theory to the temperature-dependent data yields the activation enthalpies and entropies for the dynamics of the large ion/water clusters, which underpin the bulk viscosity.

2.
J Phys Chem B ; 128(1): 280-286, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38150550

RESUMO

Measurement of molecular orientation relaxation using ultrafast infrared (IR) pump-probe experiments is widely used to understand the properties of liquids and other systems. In the simplest situation, the anisotropy decay is a single exponential reflecting diffusive orientational relaxation. However, the anisotropy decay is frequently biexponential. The faster component is caused by solvent caging restricting angular sampling until constraint release permits all angles to be sampled. Here, we describe another mechanism that limits the range of sampling, i.e., sampling of a restricted range of angles via internal bond reorientation on a rotational potential surface with barriers. If the internal angular sampling occurs faster than the entire molecule's diffusive orientational relaxation, it will produce a fast component of anisotropy decay with a cone angle determined by the shape of the internal rotation potential. We studied four molecules to illustrate the effects of internal bond rotations on anisotropy decay. The molecules are p-chlorobenzonitrile, phenylselenocyanate, phenylthiocyanate, and 2-nitrophenylselenocyante in the solvent N,N-dimethylformamide. The CN stretch is used as the IR chromophore. p-Chlorobenzonitrile does not have internal rotation; its anisotropy decays as a single exponential. The other three have bent geometries and internal rotation of the moieties containing the CN occurs; the anisotropies decay as biexponentials. The faster of the two decays can be understood in terms of motions on the rotational potential surface. A method is developed for extracting the intramolecular rotational potential surface by employing a modification of the harmonic cone model, and the results are compared to density functional theory calculations.

4.
J Phys Chem B ; 127(27): 6217-6226, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37381928

RESUMO

Interface effects in the room temperature ionic liquids (RTILs) 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimNTf2) were investigated using ultrafast infrared polarization selective pump-probe (PSPP) spectroscopy. The CN stretch mode of SCN- dissolved in the RTILs was used as the vibrational probe. The vibrational lifetime of the SCN- was the experimental observable. Quite similar single SCN- lifetimes were observed: 59.5 ± 0.4 ps in bulk BmimBF4 and 56.4 ± 0.4 ps in bulk BmimNTf2. Thin films of both RTILs with thicknesses in the range of 15-300 nm were prepared by spin coating on functionalized substrates. PSPP experiments were performed in a small-incidence reflection geometry. In the thin films, a second, shorter lifetime was observed in addition to the bulk lifetime, with the amplitude of the shorter lifetime increasing with decreasing film thickness. By modeling the thickness dependence of the lifetime amplitudes, the correlation length of the interface effect (constant for exponential falloff of the influence of the interface) was determined to be 44.6 ± 0.6 nm for BmimBF4 and 48.3 ± 2.2 nm for BmimNTf2. The values for the shorter film lifetimes were 12.6 ± 0.1 ps for BmimBF4 and 20.2 ± 0.6 ps for BmimNTf2; the substantial differences from the bulk lifetimes showed that some of the SCN- anions near the interface experience an environment distinct from that of the bulk. It was also found that for the BmimNTf2 sample only, some of the SCN- anions reside in the surface functionalized layer with two distinct environments having distinct lifetimes.

5.
J Phys Chem B ; 127(20): 4532-4543, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37172191

RESUMO

The structural dynamics of highly concentrated LiCl and LiBr aqueous solutions were observed from 1-4 to 1-16 water molecules per ion pair using ultrafast polarization-selective pump-probe (PSPP) experiments on the OD stretch of dilute HOD. At these high salt concentrations, an extended ion/water network exists with complex structural dynamics. Population decays from PSPP experiments highlight two distinct water components. From the frequency-dependent amplitudes of the decays, the spectra of hydroxyls bound to halides and to water oxygens are obtained, which are not observable in the FT-IR spectra. PSPP experiments also measure frequency-dependent water orientational relaxation. At short times, wobbling dynamics within a restricted angular cone occurs. At high concentrations, the cone angles are dependent on frequency (hydrogen bond strength), but at higher water concentrations (>10 waters per ion pair), there is no frequency dependence. The average cone angle increases as the ion concentration decreases. The slow time constant for complete HOD orientational relaxation is independent of concentration but slower in LiCl than in LiBr. Comparison to structural MD simulations of LiCl from the literature indicates that the loss of the cone angle wavelength dependence and the increase in the cone angles as the concentration decreases occur as the prevalence of large ion/water clusters gives way to contact ion pairs.

6.
J Phys Chem B ; 127(15): 3488-3495, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37018545

RESUMO

We report the dynamics of concentrated lithium chloride aqueous solutions over a range of moderate to high concentrations. Concentrations (1-29 to 1-3.3 LiCl-water) were studied in which, at the highest concentrations, there are far too few water molecules to solvate the ions. The measurements were made with optically heterodyne-detected optical Kerr effect experiments, a non-resonant technique able to observe dynamics over a wide range of time scales and signal amplitudes. While the pure water decay is a biexponential, the LiCl-water decays are tetra-exponentials at all concentrations. The faster two decays arise from water dynamics, while the slower two decays reflect the dynamics of the ion-water network. The fastest decay (t1) is the same as pure water at all concentrations. The second decay (t2) is also the same as that of pure water at the lower concentrations, and then, it slows with increasing concentration. The slower dynamics (t3 and t4), which do not have counterparts in pure water, arise from ion-water complexes and, at the highest concentrations, an extended ion-water network. Comparisons are made between the concentration dependence of the observed dynamics and simulations of structural changes from the literature, which enable the assignment of dynamics to specific ion-water structures. The concentration dependences of the bulk viscosity and the ion-water network dynamics are directly correlated. The correlation provides an atomistic-level understanding of the viscosity.

7.
J Phys Chem B ; 127(14): 3278-3290, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36995831

RESUMO

The dynamics of aqueous magnesium chloride solutions, from relatively dilute (0.5 m) to near saturated (4.2 m) concentrations, were investigated using ultrafast two dimensional infrared and polarization selective pump-probe spectroscopies. The experiments were performed on two spectrally distinct nitrile stretch frequencies of the selenocyanate vibrational probe, corresponding to the CN nitrogen lone pair being associated with water and with Mg2+. No chemical exchange of the two species was observed over the experimental time scale (∼100 ps), enabling straightforward analysis of their dynamics. The dynamics reported by the Mg2+-associated peak are slower than those of the water-associated peak, suggesting that the immediate environment of the hydrated Mg2+ is different from the rest of the solution. Notably, the Mg2+-associated peak displays three spectral diffusion time scales, the slowest being ∼30 ps, while the water-associated peak decays as a faster biexponential. From the complete orientational relaxation time and hydrodynamic theory, a magnesium hydration number of six was obtained, which is in good agreement with NMR and X-ray diffraction studies. This hydration number holds for all concentrations until near saturation, when the linewidths and the dynamics deviate from linear trends, indicative of Mg2+ solvation structure changes resulting from a shortage of water molecules needed for full solvation.

8.
J Phys Chem B ; 127(5): 1276-1286, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36706351

RESUMO

The ultrafast dynamics of acrylamide monomers (AAm), polyacrylamide (PAAm), and polyacrylamide hydrogels (PAAm-HG) in water were studied using optical heterodyne-detected optical Kerr effect (OHD-OKE) spectroscopy. Previous ultrafast infrared (IR) measurements of the water dynamics showed that at the same concentration of the acrylamide moiety, AAm, PAAm, and PAAm-HG exhibited identical water dynamics and that these dynamics slowed with increasing concentration. In contrast to the IR measurements, OHD-OKE experiments measure the dynamics of both the water and the acrylamide species, which occur on different time scales. In this study, the dynamics of all the acrylamide systems slowed with increasing concentration. We found that AAm exhibits tetraexponential decays, the longest component of which followed Debye-Stokes-Einstein behavior except for the highest concentration, 40% (w/v). Low concentrations of PAAm followed a single power law decay, while high concentrations of PAAm and all concentrations of PAAm-HG decayed with two power laws. The highest concentrations, 25% and 40%, of PAAm and PAAm-HG showed nearly identical dynamics. We interpreted this result as reflecting a similar extent of chain-chain interactions. At low concentrations, PAAm displays non-Markovian, single-chain dynamics (single power law), but PAAm displays entangled chain-chain interactions at high concentrations (two power laws). PAAm-HG has chain-chain interactions at all concentrations that arise from the cross-linking. At high concentrations, the dynamics of the entangled of PAAm become identical within error as those of the cross-linked PAAm-HG.

9.
J Phys Chem B ; 127(3): 717-731, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36629314

RESUMO

A vibration's transition frequency is partly determined by the first-order Stark effect, which accounts for the electric field experienced by the mode. Using ultrafast infrared pump-probe and FT-IR spectroscopies, we characterized both the 0 → 1 and 1 → 2 vibrational transitions' field-dependent peak positions and line widths of the CN stretching mode of benzonitrile (BZN) and phenyl selenocyanate (PhSeCN) in ten solvents. We present a theoretical model that decomposes the observed line width into a field-dependent Stark contribution and a field-independent non-Stark solvent coupling contribution (NSC). The model demonstrates that the field-dependent peak position is independent of the line width, even when the NSC dominates the latter. Experiments show that when the Stark tuning rate is large compared to the NSC (PhSeCN), the line width has a field dependence, albeit with major NSC-induced excursions from linearity. When the Stark tuning rate is small relative to the NSC (BZN), the line width is field-independent. BZN's line widths are substantially larger for the 1 → 2 transition, indicating a 1 → 2 transition enhancement of the NSC. Additionally, we examine, theoretically and experimentally, the difference in the 0 → 1 and 1 → 2 transitions' Stark tuning rates. Second-order perturbation theory combined with density functional theory explain the difference and show that the 1 → 2 transition's Stark tuning rate is ∼10% larger. The Stark tuning rate of PhSeCN is larger than BZN's for both transitions, consistent with the theoretical calculations. This study provides new insights into vibrational line shape components and a more general understanding of the vibrational response to external electric fields.

10.
J Phys Chem B ; 126(36): 7066-7075, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067498

RESUMO

Poly-N-isopropylacrylamide (PNIPAM) is a thermo-responsive polymer that exhibits a reversible structural change from extended chains to aggregates in aqueous solution above its lower critical solution temperature (LCST). Using polarization-selective IR pump-probe spectroscopy, the water orientational dynamics in PNIPAM from below to above the LCST were examined and compared to those of its monomer solution, N-isopropylacrylamide (NIPAM), polyacrylamide, and an acrylamide monomer solution, which are not thermo-responsive. The OD stretch of dilute HOD in H2O is used as a vibrational probe of water orientational dynamics. Below the LCST of the polymer, NIPAM and PNIPAM solutions exhibited identical water dynamics that were significantly different from those of bulk water, containing both faster and slower components due to solute-water interactions. Therefore, there is no difference in the nature of water interactions with a single NIPAM moiety and a long polymer chain. For all systems, including PNIPAM below and above the LCST, the orientational dynamics were modeled with a bulk water component and a polymer/monomer-associated component based on previous experimental and computational findings. Above the LCST, PNIPAM showed fast water orientational relaxation but much slower long-time dynamics compared to those of NIPAM. The slow component in PNIPAM, which was too slow to be accurately measured due to the limited OD vibrational lifetime, is ascribed to water confined in small voids (<2 nm in diameter) of PNIPAM globules. These results highlight important details about thermo-responsive polymers and the dynamics of their solvation water as they undergo a significant structural change.


Assuntos
Polímeros , Água , Resinas Acrílicas , Polímeros/química , Soluções/química , Temperatura , Água/química
11.
J Am Chem Soc ; 144(9): 4233-4243, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35226487

RESUMO

In highly concentrated salt solutions, the water hydrogen bond (H-bond) network is completely disrupted by the presence of ions. Water is forced to restructure as dictated by the water-ion and ion-ion interactions. Using ultrafast polarization-selective pump-probe (PSPP) spectroscopy measurements of the OD stretch of dilute HOD, we demonstrate that the limited water-water H-bonding present in concentrated lithium chloride solutions (up to four waters per ion pair) is, on average, stronger than that occurring in bulk water. Furthermore, information on the orientational dynamics and the angular restriction of water H-bonded to both water oxygens and chloride anions was obtained through analysis of the frequency-dependent anisotropy decays. It was found that, when the salt concentration increased, the water showed increasing restriction and slowing at frequencies correlated with strong H-bonding. The angular restriction of the water molecules and strengthening of water-water H-bonds are due to the formation of a water-ion network not present in bulk water and dilute salt solutions. The structural evolution of the ionic medium was also observed through spectral diffusion of the OD stretch using 2D IR spectroscopy. Compared to bulk water, there is significant slowing of the biexponential spectral diffusion dynamics. The slowest component of the spectral diffusion (13 ps) is virtually identical to the time for complete reorientation of HOD measured with the PSPP experiments. This result suggests that the slowest component of the spectral diffusion reflects rearrangement of water molecules in the water-ion network.


Assuntos
Água , Difusão , Ligação de Hidrogênio , Íons/química , Soluções , Espectrofotometria Infravermelho/métodos , Água/química
12.
J Phys Chem B ; 125(45): 12539-12551, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34743512

RESUMO

Proton transfer reactions are ubiquitous in chemistry, especially in aqueous solutions. We investigate photoinduced proton transfer between the photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and water using fast fluorescence spectroscopy and ab initio molecular dynamics simulations. Photoexcitation causes rapid proton release from the HPTS hydroxyl. Previous experiments on HPTS/water described the progress from photoexcitation to proton diffusion using kinetic equations with two time constants. The shortest time constant has been interpreted as protonated and photoexcited HPTS evolving into an "associated" state, where the proton is "shared" between the HPTS hydroxyl and an originally hydrogen bonded water. The longer time constant has been interpreted as indicating evolution to a "solvent separated" state where the shared proton undergoes long distance diffusion. In this work, we refine the previous experimental results using very pure HPTS. We then use excited state ab initio molecular dynamics to elucidate the detailed molecular mechanism of aqueous excited state proton transfer in HPTS. We find that the initial excitation results in rapid rearrangement of water, forming a strong hydrogen bonded network (a "water wire") around HPTS. HPTS then deprotonates in ≤3 ps, resulting in a proton that migrates back and forth along the wire before localizing on a single water molecule. We find a near linear relationship between the emission wavelength and proton-HPTS distance over the simulated time scale, suggesting that the emission wavelength can be used as a ruler for the proton distance. Our simulations reveal that the "associated" state corresponds to a water wire with a mobile proton and that the diffusion of the proton away from this water wire (to a generalized "solvent-separated" state) corresponds to the longest experimental time constant.


Assuntos
Prótons , Água , Sulfonatos de Arila , Solventes , Espectrometria de Fluorescência
13.
J Am Chem Soc ; 143(36): 14855-14868, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34491037

RESUMO

The dynamics and structure of water in polyacrylamide hydrogels (PAAm-HG), polyacrylamide, and acrylamide solutions are investigated using ultrafast infrared experiments on the OD stretch of dilute HOD/H2O and molecular dynamics simulations. The amide moiety of the monomer/polymers interacts strongly with water through hydrogen bonding (H-bonding). The FT-IR spectra of the three systems indicate that the range of H-bond strengths is relatively unchanged from bulk water. Vibrational population relaxation measurements show that the amide/water H-bonds are somewhat weaker but fall within the range of water/water H-bond strengths. A previous study of water dynamics in PAAm-HG suggested that the slowing observed was due to increasing confinement with concentration. Here, for the same concentrations of the amide moiety, the experimental results demonstrate that the reorientational dynamics (infrared pump-probe experiments) and structural dynamics (two-dimensional infrared spectroscopy) are identical in the three acrylamide systems studied. Molecular dynamics simulations of the water orientational relaxation in aqueous solutions of the acrylamide monomer, trimer, and pentamer are in good agreement with the experimental results and are essentially chain length independent. The simulations show that there is a slower, low-amplitude (<7%) decay component not accessible by the experiments. The simulations examine the dynamics and structure of water H-bonded to acrylamide, in the first solvent shell, and beyond for acrylamide monomers and short chains. The experiments and simulations show that the slowing of water dynamics in PAAm-HG is not caused by confinement in the polymer network but rather by interactions with individual acrylamide moieties.

14.
J Phys Chem B ; 125(35): 10018-10034, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34450013

RESUMO

Enhancement of processes ranging from gas sorption to ion conduction in a liquid can be substantial upon nanoconfinement. Here, the dynamics of a polar aprotic solvent, 1-methylimidazole (MeIm), in mesoporous silica (2.8, 5.4, and 8.3 nm pore diameters) were examined using femtosecond infrared vibrational spectroscopy and molecular dynamics simulations of a dilute probe, the selenocyanate (SeCN-) anion. The long vibrational lifetime and sensitivity of the CN stretch enabled a comprehensive investigation of the relatively slow time scales and subnanometer distance dependences of the confined dynamics. Because MeIm does not readily donate hydrogen bonds, its interactions in the hydrophilic silanol pores differ more from the bulk than those of water confined in the same mesopores, resulting in greater structural order and more dramatic slowing of dynamics. The extent of surface effects was quantified by modified two-state models used to fit three spatially averaged experimental observables: vibrational lifetime, orientational relaxation, and spectral diffusion. The length scales and the models (smoothed step, exponential decay, and simple step) describing the transitions between the distinctive shell behavior at the surface and the bulk-like behavior at the pore interior were compared to those of water. The highly nonuniform distributions of the SeCN- probe and antiparallel layering of MeIm revealed by the simulations guided the interpretation of the results and development of the analytical models. The results illustrate the importance of electrostatic effects and H-bonding interactions in the behavior of confined liquids.


Assuntos
Dióxido de Silício , Água , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Solventes
15.
J Phys Chem B ; 125(31): 8907-8918, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34339200

RESUMO

Ultrafast infrared vibrational spectroscopy is widely used for the investigation of dynamics in systems from water to model membranes. Because the experimental observation window is limited to a few times the probe's vibrational lifetime, a frequent obstacle for the measurement of a broad time range is short molecular vibrational lifetimes (typically a few to tens of picoseconds). Five new long-lifetime aromatic selenocyanate vibrational probes have been synthesized and their vibrational properties characterized. These probes are compared to commercial phenyl selenocyanate. The vibrational lifetimes range between ∼400 and 500 ps in complex solvents, which are some of the longest room-temperature vibrational lifetimes reported to date. In contrast to vibrations that are long-lived in simple solvents such as CCl4, but become much shorter in complex solvents, the probes discussed here have ∼400 ps lifetimes in complex solvents and even longer in simple solvents. One of them has a remarkable lifetime of 1235 ps in CCl4. These probes have a range of molecular sizes and geometries that can make them useful for placement into different complex materials due to steric reasons, and some of them have functionalities that enable their synthetic incorporation into larger molecules, such as industrial polymers. We investigated the effect of a range of electron-donating and electron-withdrawing para-substituents on the vibrational properties of the CN stretch. The probes have a solvent-independent linear relationship to the Hammett substituent parameter when evaluated with respect to the CN vibrational frequency and the ipso 13C NMR chemical shift.


Assuntos
Compostos de Selênio , Vibração , Cianatos , Espectrofotometria Infravermelho
16.
J Chem Phys ; 154(24): 244104, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241361

RESUMO

The theoretical framework for reorientation-induced spectral diffusion (RISD) describes the polarization dependence of spectral diffusion dynamics as measured with two-dimensional (2D) correlation spectroscopy and related techniques. Generally, RISD relates to the orientational dynamics of the molecular chromophore relative to local electric fields of the medium. The predictions of RISD have been shown to be very sensitive to both restricted orientational dynamics (generally arising from steric hindrance) and the distribution of local electric fields relative to the probe (electrostatic ordering). Here, a theory that combines the two effects is developed analytically and supported with numerical calculations. The combined effects can smoothly vary the polarization dependence of spectral diffusion from the purely steric case (least polarization dependence) to the purely electrostatic case (greatest polarization dependence). Analytic approximations of the modified RISD equations were also developed using the orientational dynamics of the molecular probe and two order parameters describing the degree of electrostatic ordering. It was found that frequency-dependent orientational dynamics are a possible consequence of the combined electrostatic and steric effects, providing a test for the applicability of this model to experimental systems. The modified RISD equations were then used to successfully describe the anomalous polarization-dependent spectral diffusion seen in 2D infrared spectroscopy in a polystyrene oligomer system that exhibits frequency-dependent orientational dynamics. The degree of polarization-dependent spectral diffusion enables the extent of electrostatic ordering in a chemical system to be quantified and distinguished from steric ordering.

17.
J Phys Chem B ; 125(17): 4566-4581, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33890776

RESUMO

Benzene complex formation and dissociation dynamics with silanols on the amorphous silica surfaces of nanoporous SiO2, from a benzene/carbon tetrachloride solution, were measured by the growth of off-diagonal peaks in the two-dimensional infrared (2D IR) chemical exchange spectrum of the isolated Si-OD stretch. The presence of two types of isolated silanols, termed type I and II, was revealed, with dissociation time constants of 82 and 4.0 ps, respectively. The type I silanols are associated with the main IR absorption feature in the Si-OD stretching region, while the type II silanols give rise to a broader shoulder to lower frequency. Polarization selective pump-probe (PSPP) measurements provided the vibrational lifetimes and orientational relaxation rates of the two silanols in the CCl4 (free) and benzene (complex) environments. The type II silanols constitute roughly 30% of the isolated silanol population and exhibit a substantially faster rate of vibrational relaxation, making the type I dynamics the dominant contribution to the PSPP and 2D IR signals. From the measured dissociation times, the enthalpies of formation for the two surface complexes were obtained, with the formation of the type I complex being significantly more exothermic. As the type II site is preferentially removed from the amorphous silica surface with increasing activation temperature, the results provide a reasonable explanation for the increased exothermicity of benzene adsorption on silica with increasing activation temperature in previous calorimetry experiments.

18.
J Phys Chem B ; 125(12): 3163-3177, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33730488

RESUMO

We present an experimentally parametrized molecular dynamics study of single-molecule and collective orientational relaxation in neat benzonitrile through the analysis of the reorientational anisotropy and polarizability anisotropy time correlation function (PA-TCF). The simulations show that the PA-TCF is dominated by collective reorientation after 20 ps. Collective reorientation is found to be slower than single-molecule reorientation by a factor of 1.67, consistent with recent experiments. The simulations provide direct evidence of local antiparallel benzonitrile configurations. These structures, which have been the center of some debate, are responsible for the slower rate of collective versus single-molecule reorientation in the liquid. Further structural analysis indicates that significant Coulombic interactions between the nitrile group and hydrogen atoms on adjacent molecules play a role in the formation of the antiparallel structures. The single-molecule dynamics reflected in the anisotropy are complex and consist of a ballistic regime, restricted angular diffusion, and spatially anisotropic free diffusion. The principal components of the rotational diffusion tensor are independently obtained and shown to reproduce the free diffusion regime of the anisotropy for each principal axis according to the predictions of a previous theory.

19.
J Am Chem Soc ; 143(9): 3583-3594, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33630576

RESUMO

The size, size distribution, dynamics, and electrostatic properties of free volume elements (FVEs) in polystyrene (PS) and poly(methyl methacrylate) (PMMA) were investigated using the Restricted Orientation Anisotropy Method (ROAM), an ultrafast infrared spectroscopic technique. The restricted orientational dynamics of a vibrational probe embedded in the polymer matrix provides detailed information on FVE sizes and their probability distribution. The probe's orientational dynamics vary as a function of its frequency within the inhomogeneously broadened vibrational absorption spectrum. By characterizing the degree of orientational restriction at different probe frequencies, FVE radii and their probability distribution were determined. PS has larger FVEs and a broader FVE size distribution than PMMA. The average FVE radii in PS and PMMA are 3.4 and 3.0 Å, respectively. The FVE radius probability distribution shows that the PS distribution is non-Gaussian, with a tail to larger radii, whereas in PMMA, the distribution is closer to Gaussian. FVE structural dynamics, previously unavailable through other techniques, occur on a ∼150 ps time scale in both polymers. The dynamics involve FVE shape fluctuations which, on average, conserve the FVE size. FVE radii were associated with corresponding electric field strengths through the first-order vibrational Stark effect of the CN stretch of the vibrational probe, phenyl selenocyanate (PhSeCN). PMMA displayed unique measured FVE radii for each electric field strength. By contrast, PS showed that, while larger radii correspond to unique and relatively weak electric fields, the smallest measured radii map onto a broad distribution of strong electric fields.

20.
J Chem Phys ; 153(20): 204201, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33261482

RESUMO

The infrared pulses used to generate nonlinear signals from a vibrational probe can cause heating via solvent absorption. Solvent absorption followed by rapid vibrational relaxation produces unwanted heat signals by creating spectral shifts of the solvent and probe absorptions. The signals are often isolated by "chopping," i.e., alternately blocking one of the incident pulses. This method is standard in pump-probe transient absorption experiments. As less heat is deposited into the sample when an incident pulse is blocked, the heat-induced spectral shifts give rise to artificial signals. Here, we demonstrate a new method that eliminates heat induced signals using pulse shaping to control pulse spectra. This method is useful if the absorption spectrum of the vibrational probe is narrow compared to the laser bandwidth. By using a pulse shaper to selectively eliminate only frequencies of light resonant with the probe absorption during the "off" shot, part of the pulse energy, and the resulting heat, is delivered to the solvent without generating the nonlinear signal. This partial heating reduces the difference heat signal between the on and off shots. The remaining solvent heat signal can be eliminated by reducing the wings of the on shot spectrum while still resonantly exciting the probe; the heat deposition from the on shot can be matched with that from the off shot, eliminating the solvent heat contribution to the signal. Modification of the pulse sequence makes it possible to measure only the heat signal, permitting the kinetics of heating to be studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...